Abstract
AbstractWe show that under certain general conditions, short sums of ℓ-adic trace functions over finite fields follow a normal distribution asymptotically when the origin varies, generalising results of Erdős–Davenport, Mak–Zaharescu and Lamzouri. In particular, this applies to exponential sums arising from Fourier transforms such as Kloosterman sums or Birch sums, as we can deduce from the works of Katz. By approximating the moments of traces of random matrices in monodromy groups, a quantitative version can be given as in Lamzouri's article, exhibiting a different phenomenon than the averaging from the central limit theorem.
Publisher
Cambridge University Press (CUP)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献