Abstract
AbstractWe study the multifractal structure of product measures. for a Borel probability measure μ and q, t Є , let and denote the multifractal Hausdorff measure and the multifractal packing measure introduced in [O11] Let μ be a Borel probability merasure on k and let v be a Borel probability measure on t. Fix q, s, t Є . We prove that there exists a number c > 0 such that
for E ⊆k, F ⊆l and Hk+l provided that μ and ν satisfy the so-called Federer condition.Using these inequalities we give upper and lower bounds for the multifractal spectrum of μ × ν in terms of the multifractal spectra of μ and ν
Publisher
Cambridge University Press (CUP)
Reference31 articles.
1. The measure of product and cylinder sets;Besicovitch;J. Land. Math. Soc.,1945
2. The dimension of Cartesian product sets;Marstrand;Proc. Land. Math. Soc.,1954
3. Multifractal Decompositions of Digraph Recursive Fractals
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献