Abstract
AbstractLet $\mathcal{C}$ be a variety of finite groups. We use profinite Bass--Serre theory to show that if u : H ↪ G is a map of finitely generated residually $\mathcal{C}$ groups such that the induced map û : Ĥ → Ĝ is a surjection of the pro-$\mathcal{C}$ completions, and G has more than one end, then H has the same number of ends as G. However if G has one end the number of ends of H may be larger; we observe cases where this occurs for $\mathcal{C}$ the class of finite p-groups.We produce a monomorphism of groups u : H ↪ G such that: either G is hyperbolic but not residually finite; or û : Ĥ → Ĝ is an isomorphism of profinite completions but H has property (T) (and hence (FA)), but G has neither. Either possibility would give new examples of pathological finitely generated groups.
Publisher
Cambridge University Press (CUP)
Reference25 articles.
1. Decision problems and profinite completions of groups
2. J. Serre Arbres, amalgames, SL2. Société Mathématique de France, Paris, 1977. Avec un sommaire anglais, Rédigé avec la collaboration de Hyman Bass, Astérisque, No. 46.
3. On finitely generated profinite groups, I: strong completeness and uniform bounds
4. Fundamental groups of graphs of profinite groups;Zalesskiĭ;Algebra i Analiz,1989
5. Infinite groups with fixed point properties
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献