Abstract
A Markov branching process in either discrete time (the Galton–Watson process) or continuous time is modified by the introduction of a process of catastrophes which remove some individuals (and, by implication, their descendants) from the population. The catastrophe process is independent of the reproduction mechanism and takes the form of a sequence of independent identically distributed non-negative integer-valued random variables. In the continuous time case, these catastrophes occur at the points of an independent Poisson process with constant rate. If at any time the size of a catastrophe is at least the current population size, then the population becomes extinct. Thus in both discrete and continuous time we still have a Markov chain with stationary transition probabilities and an absorbing state at zero. Some authors use the term ‘emigration’ as an alternative to ‘catastrophe’.
Publisher
Cambridge University Press (CUP)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献