Abstract
AbstractLet q ≥ 3, 2 ≤ r ≤ φ(q) and a1, . . ., ar be distinct residue classes modulo q that are relatively prime to q. Assuming the Generalized Riemann Hypothesis (GRH) and the Linear Independence Hypothesis (LI), M. Rubinstein and P. Sarnak [11] showed that the vector-valued function Eq;a1, . . ., ar(x) = (E(x;q,a1), . . ., E(x;q,ar)), where $E(x;q,a)= ({\log x}/{\sqrt{x}})(\phi(q)\pi(x;q,a)-\pi(x))$, has a limiting distribution μq;a1, . . ., ar which is absolutely continuous on $\mathbb{R}^r$. Furthermore, they proved that for r fixed, μq;a1, . . ., ar tends to a multidimensional Gaussian as q → ∞. In the present paper, we determine the exact rate of this convergence, and investigate the asymptotic behavior of the large deviations of μq;a1, . . ., ar.
Publisher
Cambridge University Press (CUP)
Reference11 articles.
1. [8] Monach W. R. Numerical investigation of several problems in number theory. Ph.D Dissertation University of Michigan (1980).
2. On the Class-Number of the Corpus P
(√−k
)
3. Comparative prime-number theory. I
4. [6] Lamzouri Y. Prime number races with three or more competitors, 38 pages. ArXiv:1101.0836.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献