Abstract
AbstractLet A be a commutative domain of characteristic 0 which is finitely generated over ℤ as a ℤ-algebra. Denote by A* the unit group of A and by K the algebraic closure of the quotient field K of A. We shall prove effective finiteness results for the elements of the set
\begin{equation*}
\mathcal{C}:=\{ (x,y)\in (A^*)^2 | F(x,y)=0 \}
\end{equation*}
where F(X, Y) is a non-constant polynomial with coefficients in A which is not divisible over K by any polynomial of the form XmYn - α or Xm - α Yn, with m, n ∈ ℤ⩾0, max(m, n) > 0, α ∈ K*. This result is a common generalisation of effective results of Evertse and Győry [12] on S-unit equations over finitely generated domains, of Bombieri and Gubler [5] on the equation F(x, y) = 0 over S-units of number fields, and it is an effective version of Lang's general but ineffective theorem [20] on this equation over finitely generated domains. The conditions that A is finitely generated and F is not divisible by any polynomial of the above type are essentially necessary.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献