The Cauchy integral and analytic continuation

Author:

Brennan James. E.

Abstract

One of the most important concepts in the theory of approximation by analytic functions is that of analytic continuation. In a typical problem, for example, there is generally a region Ω, a Banach space B of functions analytic in Ω and a subfamily ℱ ⊂ B, each member of which is analytic in some larger open set, and one might be asked to decide whether or not ℱ is dense in B. It often happens, however, that either ℱ is dense or the only functions which can be so approximated have a natural analytic continuation across ∂Ω. A similar phenomenon is also known to occur even for approximation on sets without interior. In this article we shall describe a method for proving such theorems which can be applied in a variety of settings and, in particular, to: (1)  the Bernštein problem for weighted polynomial approximation on the real line; (2)  the completeness problem for weighted polynomial approximation on bounded simply connected regions; (3) the Shapiro overconvergence problem for sequences of rational functions with sparse poles; (4) the Akutowicz-Carleson minimum problem for interpolating functions. Although we shall present no new results, the method of proof, which is based on an argument of the author [6], seems sufficiently versatile to warrant exposition.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference18 articles.

1. Point evaluations, invariant subspaces and approximation in the mean by polynomials

2. The Brennan alternative for measures with finite entropy;Hruščev;Izv. Akad. Nauk Armjan,1979

3. On Bernstein approximation problem

4. On the existence of a largest subharmonic minorant of a given function

5. Sur l'approximation en moyenne par polynomes des fonctions d'une variable complexe;Keldyš;Mat. Sb.,1945

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On a conjecture of Mergelyan;Journal of Contemporary Mathematical Analysis;2008-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3