Filtrations, closure operations and prime divisors

Author:

Okon J. S.,Ratliff L. J.

Abstract

AbstractLet ƒ = {In}n≽ 0be a filtration on a ringR, let(In)w= {xεR;xsatisfies an equationxk+i1xk− 1+ … +ik= 0, whereijεInj} be the weak integral closure ofInand let ƒw= {(In)w}n≽ 0. Then it is shown that ƒ ↦ ƒwis a closure operation on the set of all filtrations ƒ ofR, and ifRis Noetherian, then ƒwis a semi-prime operation that satisfies the cancellation law: if ƒh≤ (gh)wand Rad (ƒ) ⊆ Rad (h), then ƒwgw. These results are then used to show that ifRand ƒ are Noetherian, then the sets Ass (R/(In)w) are equal for all largen. Then these results are abstracted, and it is shown that ifIIxis a closure (resp.. semi-prime, prime) operation on the set of idealsIofR, then ƒ ↦ ƒx= {(In)x}n≤ 0is a closure (resp., semi-prime, prime) operation on the set of filtrations ƒ ofR. In particular, if Δ is a multiplicatively closed set of finitely generated non-zero ideals ofRand (In)Δ= ∪KεΔ(In, K: K), then ƒ ↦ ƒΔis a semi-prime operation that satisfies a cancellation law, and ifRand ƒ are Noetherian, then the sets Ass (R/(In)Δ) are quite well behaved.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference16 articles.

1. On the relevant transform and the relevant component of an ideal

2. On asymptotic prime divisors

3. Prime divisors, analytic spread and filtrations

4. [14] Rees D. . Asymptotic properties of ideals. Preprint.

5. [1] Bishop W. . A theory of multiplicity for multiplicative filtrations. Ph.D. thesis, Western Michigan University 1971.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3