Author:
ERRAOUI MOHAMED,HAKIKI YOUSSEF
Abstract
AbstractLet
$B^{H}$
be a fractional Brownian motion in
$\mathbb{R}^{d}$
of Hurst index
$H\in\left(0,1\right)$
,
$f\;:\;\left[0,1\right]\longrightarrow\mathbb{R}^{d}$
a Borel function and
$A\subset\left[0,1\right]$
a Borel set. We provide sufficient conditions for the image
$(B^{H}+f)(A)$
to have a positive Lebesgue measure or to have a non-empty interior. This is done through the study of the properties of the density of the occupation measure of
$(B^{H}+f)$
. Precisely, we prove that if the parabolic Hausdorff dimension of the graph of f is greater than Hd, then the density is a square integrable function. If, on the other hand, the Hausdorff dimension of A is greater than Hd, then it even admits a continuous version. This allows us to establish the result already cited.
Publisher
Cambridge University Press (CUP)
Reference22 articles.
1. [11] Kaufman, R. . Une propriété métrique du mouvement brownien. C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A727-A728.