Author:
KRAUS DANIELA,ROTH OLIVER
Abstract
AbstractA classical result of Nitsche [22] about the behaviour of the solutions to the Liouville equation Δu= 4e2unear isolated singularities is generalized to solutions of the Gaussian curvature equation Δu= −κ(z)e2uwhere κ is a negative Hölder continuous function. As an application a higher–order version of the Yau–Ahlfors–Schwarz lemma for complete conformal Riemannian metrics is obtained.
Publisher
Cambridge University Press (CUP)
Reference35 articles.
1. Local estimates of singular solution to Gaussian curvature equation;Yunyan;J. Partial Differential Equations,2003
2. A General Schwarz Lemma for Kahler Manifolds
3. Bounded analytic functions and metrics of constant curvature on Riemann surfaces
4. The Schwarz lemma for nonpositively curved Riemmanian surfaces
5. [30] Schwarz H. A. Preisaufgabe der Math.–Phys. Klasse der Königl. Ges. der Wissen-schaften zu Göttingen für das Jahr 1891. Nachr. Akad. Wiss. Gött. (1890), 216.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献