On the method for solution of unsteady thermal boundary-layers in case of two-dimensional low-speed flows

Author:

Ðurić Milan Ð.

Abstract

AbstractThis paper is dedicated to the question of solving unsteady thermal boundary-layers in the case of two-dimensional low-speed flows, provided that the difference between the temperature of the stream and that of the wall is not too great (so that the density is sensibly constant) and that the change in the wall temperature Tw (x, t) takes place at the same instant as the body is set into motion. The velocity boundary-layer is uncoupled from the thermal one and can be considered separately. In paper (2) is given the method for obtaining the velocity field (u, v). The temperature field T depends on the velocity field and can be obtained only after this one. The method (2) being available for this purpose assuming the difference between the temperature of the wall Tw (x, t) and that of the main-stream T in the form ofwhere S(x) and θ(t) are arbitrary functions of x respectively t, satisfying certain conditions required by the method.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference12 articles.

1. Combined effects of unsteady flight velocity and surface temperature on heat transfer;Sparrow;Jet Prop,1958

2. Unified theory for the solutions of the unsteady thermal boundary-layer equation

3. The response of laminar skin friction and heat transfer to fluctuations in the stream velocity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3