Author:
KAR ADITI,KROPHOLLER PETER,NIKOLOV NIKOLAY
Abstract
AbstractSuppose an amenable group G is acting freely on a simply connected simplicial complex $\~{X}$ with compact quotient X. Fix n ≥ 1, assume $H_n(\~{X}, \mathbb{Z}) = 0$ and let (Hi) be a Farber chain in G. We prove that the torsion of the integral homology in dimension n of $\~{X}/H_i$ grows subexponentially in [G : Hi]. This fails if X is not compact. We provide the first examples of amenable groups for which torsion in homology grows faster than any given function. These examples include some solvable groups of derived length 3 which is the minimal possible.
Publisher
Cambridge University Press (CUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献