Localization and class groups of module categories with exactness defects

Author:

Holland D.,Wilson S. M. J.

Abstract

AbstractWe present a new way of forming a grothendieck group with respect to exact sequences. A ‘defect’ is attached to each non-split sequence and the relation that would normally be derived from a collection of exact sequences is only effective if the (signed) sum of the corresponding defects is zero. The theory of the localization exact sequence and, in particular, of the relative group in this sequence is developed. The (‘locally free’) class group of a module category with exactness defect is defined and an idèlic formula for this is given. The role of torsion and of torsion-free modules is investigated. One aim of the work is to enhance the locally trivial, ‘class group’, invariants obtainable for a module while keeping to a minimum the local obstructions to the definition of such invariants.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference14 articles.

1. S-groupes des classes d'un ordre arithmétique

2. Structure galoisienne des anneaux d'entiers d'extensions sauvagement ramifiées. I

3. [9] Holland D. and Wilson S. M. J. . Frölich's and Chinburg's conjectures in the factorizability defect class group, to appear.

4. Locally free modules over arithmetic orders;Fröhlich;J. Reine Angew. Math.,1975

5. Galois Module Structure of Algebraic Integers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Equivariant Epsilon Constants, Discriminants and Étale Cohomology;Proceedings of the London Mathematical Society;2003-10-23

2. Equivalence of factorizability theories;Mathematical Proceedings of the Cambridge Philosophical Society;1998-05

3. Chinburg's Third Invariant for Abelian Extensions of Imaginary Quadratic Fields;Proceedings of the London Mathematical Society;1997-01

4. Factor Equivalence of Rings of Integers and Chinburg's Invariant in the Defect Class Group;Journal of the London Mathematical Society;1994-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3