Module invariants and root numbers for quaternion fields of degree 41r

Author:

Fröhlich A.

Abstract

1. The results. Let l be an odd prime, r ≥ 1, and letbe the quaternion group of order 4lr, as given by generators and relations. Throughout N is a tamely ramified normal number field with Galois group Gal (N/Q) = H (a ‘quaternion field’), and its ring of integers. We are interested in the structure of as a module over the integral group ring ZH. Deriving, first, certain classgroup invariants for locally free ZH-modules, we shall then determine those for the module in terms of the arithmetic invariants of N/Q. When 1 ≡ – 1 (mod 4), this yields again a Galois module interpretation of Artin root numbers quite analogous to that in (2). On the other hand for l ≡ 1 (mode 4), we shall get a weak ‘normal integral basis theorem’. The original impetus for this work came from computations of J. Queyrut, who – in different language – obtained these results in the case l = 3, r = 1 (cf. (7)). The tools, we are using, come from the general theory developed in recent years with such concrete applications in mind, and it is perhaps of interest to see how the various ‘strands’, on root numbers (cf. (3), (4)), on locally free modules (cf. (5)), and on Galois module structure (cf. (6)) are here pulled together. For technical reasons, we shall impose on N the slight further restriction, that l be non-ramified, although our results would remain true without this. Both the statements and the proofs of the theorem depend on ideas contained in (5) and (6). The reader who is prepared to take them for granted should, however, be able to read the present paper independently of those papers.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference7 articles.

1. Extensions quaternioniennes Généralisées et constante de l'equation fonctionnelle des séries L d'artin;Queyrut;Publ. Math. Bordeaux,1972

2. Artin Root Numbers, Conductors, and Representations for Generalized Quaternion Groups

3. Resolvents, discriminants, and trace invariants

4. Artin-root numbers and normal integral bases for quaternion fields

5. (6) Fröhlich A. Arithmetic and Galois module structure for tame extensions, to appear.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local root numbers and Hermitian-Galois module structure of rings of integers;Mathematische Annalen;1983-06

2. On Fr�hlich's conjecture for rings of integers of tame extensions;Inventiones Mathematicae;1981-02

3. Integral Representations in the theory of finite CW-complexes;Integral Representations and Applications;1981

4. Remarks on the history and applications of integral representations;Integral Representations and Applications;1981

5. Locally free class groups of orders;Lecture Notes in Mathematics;1975

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3