Abstract
AbstractIn analogy to the classical isomorphism between $\mathcal{Lgrave;}(\mathcal{S}(\mathbb{R}^{n}),\mathcal{S}^{\prime}(\mathbb{R}^{m})) $ and $\mathcal{S}^{\prime}(\mathbb{R}^{n+m}) $, we show that a large class of moderate linear mappings acting between the space $\mathcal{G}_{\mathcal{S}}(\mathbb{R}^{n}) $ of Colombeau rapidly decreasing generalized functions and the space $\mathcal{G}_{\tau}(\mathbb{R}^{n}) $ of temperate ones admits generalized integral representations, with kernels belonging to $\mathcal{G}_{\tau}(\mathbb{R}^{n+m}) $. Furthermore, this result contains the classical one.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献