Countable partitions of Euclidean space

Author:

Schmerl James H.

Abstract

Erdös has asked whether the plane ℝ2, or more generally n-dimensional Euclidean space ℝn, can be partitioned into countably many sets none of which contains the vertices of an isosceles triangle. Assuming the Continuum Hypothesis (CH), Davies[2] (for n = 2) and Kunen[10] (for arbitrary n) proved that such partitions exist. Assuming Martin's Axiom, Erdös and Komjáth proved in [5] that such partitions exist for n = 2. We will prove here, without additional set-theoretic hypotheses, that there are such partitions in all dimensions.Let ‖x‖ denote the usual Euclidean norm of a point x ∈ ℝn, so that ‖xy‖ is the distance between x and y.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference12 articles.

1. The master coloring;Komjáth;Comptes Rendus Mathématique de l'academie des Sciences,1992

2. Triangle-Free Partitions of Euclidean Space

3. Problems and results in discrete mathematics

4. Tetrahedron Free Decomposition of R3

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. COLORING ISOSCELES TRIANGLES IN CHOICELESS SET THEORY;The Journal of Symbolic Logic;2023-09-11

2. Some algebraic equivalent forms of $\mathbb {R}\subseteq L$;Fundamenta Mathematicae;2019

3. A remark on a theorem of Erdős;Acta Mathematica Hungarica;2018-04-24

4. DECIDING THE CHROMATIC NUMBERS OF ALGEBRAIC HYPERGRAPHS;The Journal of Symbolic Logic;2018-03

5. Chromatic numbers of algebraic hypergraphs;Combinatorica;2016-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3