A note on integral integer-valued functions of several variables

Author:

Baker A.

Abstract

1. The consequences of assuming that an integral function or its derivatives take integer values for some or all integer values of the variable have been widely investigated. The best-known result of this kind was obtained by Pólya(9,10) and Hardy(6) in 1920 and states that among all transcendental integral functions which assume integer values for all non-negative integer values of the variable that of least increase is the function 2Z (cf. also (7)). Analogous results relating to integers in the Gaussian field were proved by Fukasawa(3)in 1926 and Gelfond(4)in 1929, and theorems relating to the function and its derivatives are included in the works of Gelfond (5), Selberg(14) and Straus (15). (For further results and references see (1,2, 11).) The earlier of these investigations may be regarded as the genesis of the celebrated Gelfond-Schneidersolution to the seventh problem of Hilbert and the much important work arising therefrom.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference15 articles.

1. Integral valued entire functions

2. Algebraic values of meromorphic functions

3. Sur un théorème de M. G. Pólya;Gelfond;Atti Reale Accad. Naz. Lincei X,1929

4. On Mr Hardy's extension of a theorem of Mr Pó1ya;Landau;Proc. Cambridge Philos. Soc,1920

5. Rate of growth of Hurwitz entire functions and integer valued entire functions

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Alan Baker. 19 August 1939—4 February 2018;Biographical Memoirs of Fellows of the Royal Society;2023-02

2. Alan Baker, FRS, 1939–2018;Bulletin of the London Mathematical Society;2021-12

3. APPLICATIONS ARITHMÉTIQUES DE L'INTERPOLATION LAGRANGIENNE;International Journal of Number Theory;2009-03

4. Sur les fonctions arithmétiques non entières;Israel Journal of Mathematics;2008-11-22

5. Interpolation polynômiale sur un ordre d’un corps de nombres;The Ramanujan Journal;2008-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3