On a hyperbolic 3-manifold with some special properties

Author:

Zimmermann B.

Abstract

We present a closed hyperbolic 3-manifold M with some surprising properties. The universal covering group of M is a normal torsion-free subgroup of minimal index in one of the nine Coxeter groups G, generated by the reflections in the faces of one of the nine Lannér-tetrahedra (bounded tetrahedra in hyperbolic 3-space all of whose dihedral angles are of the form π/n with n ∈ ℕ see [1] or [3]). The corresponding Coxeter group G splits as a semidirect product G = π1MA, where A is a finite subgroup of G, and G is the only one of the nine Coxeter groups associated to the Lannér-tetrahedra which admits such a splitting (this follows using results in [4]). We derive a presentation of π1M and show that the first homology group H1(M) of M is isomorphic to ℚ11. This is in sharp contrast to other torsion-free (non-normal) subgroups of finite index in Coxeter groups constructed in [1] which all have finite first homology (though it is known that they are all virtually ℚ-representable (see [5], p. 434). It follows from our computations that the Heegaard genus of M is 11, and that there exists a Heegaard splitting of M of genus 11 invariant under the action of the group I+(M) ≌ S5 ⊕ ℚ2 of orientation-preserving isometries of M (we compute this group in [4]), so that the Heegaard genus of M is equal to the equivariant Heegaard genus of the action of I+(M) on M. Moreover M is maximally symmetric in the sense of [4, 6]: the order 120 of the subgroup of index 2 in I+(M) which preserves both handle-bodies of the Heegaard splitting is the maximal possible order of a group of orientation-preserving diffeomorphisms of a handle-body of genus 11. (This maximal order is 12(g—1) for a handle-body of genus g; see [7].) By taking the coverings Mq of M corresponding to the surjections π1M→H1(M) ≌ ℚ11→(ℚq)11 for q ∈ ℕ, we obtain explicitly an infinite series of maximally symmetric hyperbolic 3-manifolds.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3