Author:
Iochum B.,Loupias G.,Rodriguez-Palacios A.
Abstract
AbstractA n.c.JB*-algebra is associative and commutative if and only if it has no non-zero nilpotent elements. This generalizes the analogous theorem of Kaplansky forC*-algebras. Different characterizations of associativity are given.
Publisher
Cambridge University Press (CUP)
Reference41 articles.
1. JV-algebras;Martinez;Math. Proc. Cambridge Philos. Soc.,1980
2. A Gelfand-Neumark theorem forC *-alternative algebras
3. On the power-bounded operators of Sz-Nagy and Foias;Holbrook;Acta Sci. Math. (Szeged),1968
4. A Vidav theorem for Banach Jordan algebras
5. [13] Dineen S. and Timoney R. M. . The centroid of a JB*-triple system. Math. Scand. (to appear).
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Estimations of the Numerical Index of a JB$$^*$$-Triple;Bulletin of the Malaysian Mathematical Sciences Society;2023-11-22
2. Non‐associative
C
*‐algebras;Algebra and Applications 1;2021-03-19
3. Banach space characterizations of unitaries: A survey;Journal of Mathematical Analysis and Applications;2010-09
4. Non self-adjoint idempotents in C*- and JB*-algebras;manuscripta mathematica;2007-07-11
5. Non associative C*-algebras revisited;North-Holland Mathematics Studies;2001