Author:
Kunen Kenneth,Miller Arnold W.
Abstract
In this paper we prove several results concerning the complexity of a set relative to compact sets. We prove that for any Polish space X and Borel set B ⊆ X, if B is not , then there exists a compact zero-dimensional P ⊆ X such that p ∩ X is not . We also show that it is consistent with ZFC that, for any A ⊆ ωω, if for all compact K ⊆ ωωA ∩ K is , then A is . This generalizes to in place of assuming the consistency of some hypotheses involving determinacy. We give an alternative proof of the following theorem of Saint-Raymond. Suppose X and Y are compact metric spaces and f is a continuous surjection of X onto Y. Then, for any A ⊆ Y, A is in Y iff f−1(A) is in X. The non-trivial part of this result is to show that taking pre-images cannot reduce the Borel complexity of a set. The techniques we use are the definability of forcing and Wadge games.
Publisher
Cambridge University Press (CUP)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Products of derived structures on topological spaces;Topology and its Applications;2016-03
2. Kunen and set theory;Topology and its Applications;2011-12
3. Permutation Groups and Covering Properties;Journal of the London Mathematical Society;2001-02
4. On a class of m.a.d. families;Journal of Symbolic Logic;1999-06
5. The first derived limit and compactly Fσ sets;Journal of the Mathematical Society of Japan;1998-10-01