Abstract
The inequalityfor fεLp(− ∞, ∞)or Lp(0, ∞) (1≤p ≤ ∞), and its extensionfor T an Hermitian or dissipative linear operator, in general unbounded, on a Banach space X, for xεX, have been considered by many authors. In particular, forms of inequality (1) have been given by Hadamard(7), Landau(15), and Hardy and Little-wood(8),(9). The second inequality has been discussed by Kallman and Rota(11), Bollobás (2) and Kato (12), and numerous further references may be found in the recent papers of Kwong and Zettl(i4) and Bollobás and Partington(3).
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Kallman-Rota inequality; a survey;Gian-Carlo Rota on Analysis and Probability;2003