THE DEFINABILITY OF THE EXTENDER SEQUENCE FROM IN

Author:

SCHLUTZENBERG FARMERORCID

Abstract

AbstractLet M be a short extender mouse. We prove that if $E\in M$ and $M\models $ E is a countably complete short extender whose support is a cardinal $\theta $ and $\mathcal {H}_\theta \subseteq \mathrm {Ult}(V,E)$ ”, then E is in the extender sequence $\mathbb {E}^M$ of M. We also prove other related facts, and use them to establish that if $\kappa $ is an uncountable cardinal of M and $\kappa ^{+M}$ exists in M then $(\mathcal {H}_{\kappa ^+})^M$ satisfies the Axiom of Global Choice. We prove that if M satisfies the Power Set Axiom then $\mathbb {E}^M$ is definable over the universe of M from the parameter $X=\mathbb {E}^M\!\upharpoonright \!\aleph _1^M$ , and M satisfies “Every set is $\mathrm {OD}_{\{X\}}$ ”. We also prove various local versions of this fact in which M has a largest cardinal, and a version for generic extensions of M. As a consequence, for example, the minimal proper class mouse with a Woodin limit of Woodin cardinals models “ $V=\mathrm {HOD}$ ”. This adapts to many other similar examples. We also describe a simplified approach to Mitchell–Steel fine structure, which does away with the parameters $u_n$ .

Publisher

Cambridge University Press (CUP)

Reference15 articles.

1. [12] Schlutzenberg, F. and Trang, N. , The fine structure of operator mice, preprint, 2016, arXiv:1604.00083v2.

2. DODD PARAMETERS AND λ-INDEXING OF EXTENDERS

3. [8] Schlutzenberg, F. , Ordinal definability in $L\left[E\right]$ , preprint, 2020, arXiv:2012.07185v1.

4. Fine Structure and Iteration Trees

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3