EXTENSIONS AND LIMITS OF THE SPECKER–BLATTER THEOREM

Author:

FISCHER ELDAR,MAKOWSKY JOHANN A.ORCID

Abstract

Abstract The original Specker–Blatter theorem (1983) was formulated for classes of structures $\mathcal {C}$ of one or several binary relations definable in Monadic Second Order Logic MSOL. It states that the number of such structures on the set $[n]$ is modularly C-finite (MC-finite). In previous work we extended this to structures definable in CMSOL, MSOL extended with modular counting quantifiers. The first author also showed that the Specker–Blatter theorem does not hold for one quaternary relation (2003). If the vocabulary allows a constant symbol c, there are n possible interpretations on $[n]$ for c. We say that a constant c is hard-wired if c is always interpreted by the same element $j \in [n]$ . In this paper we show: (i) The Specker–Blatter theorem also holds for CMSOL when hard-wired constants are allowed. The proof method of Specker and Blatter does not work in this case. (ii) The Specker–Blatter theorem does not hold already for $\mathcal {C}$ with one ternary relation definable in First Order Logic FOL. This was left open since 1983. Using hard-wired constants allows us to show MC-finiteness of counting functions of various restricted partition functions which were not known to be MC-finite till now. Among them we have the restricted Bell numbers $B_{r,A}$ , restricted Stirling numbers of the second kind $S_{r,A}$ or restricted Lah-numbers $L_{r,A}$ . Here r is a non-negative integer and A is an ultimately periodic set of non-negative integers.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3