Promotion of follicular antrum formation by pig oocytes in vitro

Author:

Shen Xiangju,Miyano Takashi,Kato Seishiro

Abstract

SummaryPig oocyte–cumulus–granulosa cell complexes (OCG complexes) from pig early antral follicles reorganise an antrum under the stimulation of FSH. The purpose of this study was to examine the role of the oocytes in antrum formation. In the first experiment, oocyte–cumulus complexes were removed from pig OCG complexes, and the antrum formation of parietal granulosa cells themselves (PGs) was examined. Antrum formation by sham-operated OCG complexes (OC/G complexes), in which the connections between the oocyte–cumulus complexes and the parietal granulosa cells had been disrupted, was also examined. The complexes were cultured for 8 days in collagen gels in the presence of 10ng/ml FSH. Antra were formed in about 60% of the intact OCG complexes and the sham-operated OCG complexes, while only 20% of the PGs formed antra. In the second experiment, oocyte–cumulus complexes in the OCG complexes were replaced by denuded oocytes (O/G complexes) or Sephadex G-25 beads (B/G complexes) similar in diameter to the oocytes, and the two types of complexes were cultured under the same conditions. The O/G complexes formed antra to a similar extent as the OC/G complexes, whereas the B/G complexes scarcely formed any antra. The histological sections showed that the granulosa cells in the OC/G and O/G complexes were in intimate contact with each other and retained a shape similar to those in the ovarian follicles, while the granulosa cells in the PGs and B/G complexes became quite irregular in shape. These results suggest that pig oocytes promote contact between the granulosa cells to induce antrum formation in a physiological manner.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3