The algebra of recursive graph transformation language UnCAL: complete axiomatisation and iteration categorical semantics

Author:

HAMANA MAKOTO,MATSUDA KAZUTAKA,ASADA KAZUYUKI

Abstract

The aim of this paper is to provide mathematical foundations of a graph transformation language, called UnCAL, using categorical semantics of type theory and fixed points. About 20 years ago, Bunemanet al. developed a graph database query language UnQL on the top of a functional meta-language UnCAL for describing and manipulating graphs. Recently, the functional programming community has shown renewed interest in UnCAL, because it provides an efficient graph transformation language which is useful for various applications, such as bidirectional computation.In order to make UnCAL more flexible and fruitful for further extensions and applications, in this paper, we give a more conceptual understanding of UnCAL using categorical semantics. Our general interest of this paper is to clarify what is the algebra of UnCAL. Thus, we give an equational axiomatisation and categorical semantics of UnCAL, both of which are new. We show that the axiomatisation is complete for the original bisimulation semantics of UnCAL. Moreover, we provide a clean characterisation of the computation mechanism of UnCAL called ‘structural recursion on graphs’ using our categorical semantics. We show a concrete model of UnCAL given by the λG-calculus, which shows an interesting connection to lazy functional programming.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Reference66 articles.

1. Sewell P.M. (1995). The Algebra of Finite State Processes, Ph.D. thesis, University of Edinburgh. Dept. of Computer Science technical report CST-118-95, also published as LFCS-95-328.

2. Traced monoidal categories

3. Traced Premonoidal Categories

4. Group Axioms for Iteration

5. Infinite trees and completely iterative theories: a coalgebraic view

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3