On generalized algebraic theories and categories with families

Author:

Bezem Marc,Coquand ThierryORCID,Dybjer PeterORCID,Escardó MartínORCID

Abstract

Abstract We give a syntax independent formulation of finitely presented generalized algebraic theories as initial objects in categories of categories with families (cwfs) with extra structure. To this end, we simultaneously define the notion of a presentation Σ of a generalized algebraic theory and the associated category CwFΣ of small cwfs with a Σ-structure and cwf-morphisms that preserve Σ-structure on the nose. Our definition refers to the purely semantic notion of uniform family of contexts, types, and terms in CwFΣ. Furthermore, we show how to syntactically construct an initial cwf with a Σ-structure. This result can be viewed as a generalization of Birkhoff’s completeness theorem for equational logic. It is obtained by extending Castellan, Clairambault, and Dybjer’s construction of an initial cwf. We provide examples of generalized algebraic theories for monoids, categories, categories with families, and categories with families with extra structure for some type formers of Martin-Löf type theory. The models of these are internal monoids, internal categories, and internal categories with families (with extra structure) in a small category with families. Finally, we show how to extend our definition to some generalized algebraic theories that are not finitely presented, such as the theory of contextual cwfs.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Reference34 articles.

1. Voevodsky, V. (2017). Models, interpretations and the initiality conjectures. Notes from a lecture at the 2017 Logic Colloquium in Stockholm, special session on Category Theory and Type Theory in honor of Per Martin-Lf on his 75th birthday. https://www.math.ias.edu/Voevodsky/files/files-annotated/Dropbox/Unfinished_papers/Type_systems/Notes_on_Type_Systems/2017_LC_Martin-Lof_special_session/BSL_extended_abstract.pdf.

2. Revisiting the categorical interpretation of dependent type theory

3. Castellan, S. , Clairambault, P. and Dybjer, P. (2021). Categories with families: Unityped, simply typed, and dependently typed. In: Casadio, C. and Scott, P. J. (eds.) Joachim Lambek: The interplay of Mathematics, Logic, and Linguistics, Outstanding Contributions to Logic, Editor-in-Chief: Sven-Ove Hansson. vol. 20. Springer.

4. Awodey, S. , Frey, J. and Speight, S. (2018). Impredicative encodings of (higher) inductive types. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2018). New York, NY, USA, Association for Computing Machinery.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3