An insertion operator preserving infinite reduction sequences

Author:

CHEMOUIL DAVID

Abstract

A common way to show the termination of the union of two abstract reduction systems, provided both systems terminate, is to prove that they enjoy a specific property (some sort of ‘commutation’ for instance). This specific property is actually used to show that, for the union not to terminate, one of the systems must itself be non-terminating, which leads to a contradiction. Unfortunately, the property may be impossible to prove because some of the objects that are reduced do not enjoy an adequate form.Hence the purpose of this paper is threefold:First, it introduces an operator enabling us to insert a reduction step on such an object, and therefore to change its shape, while still preserving the ability to use the property. Of course, some new properties will need to be verified.Second, as an instance of our technique, the operator is applied to relax a well-known lemma stating the termination of the union of two termination abstract reduction systems.Finally, this lemma is applied in a peculiar and then in a more general way to show the termination of some lambda calculi with inductive types augmented with specific reductions dealing with:(i)copies of inductive types;(ii)the representation of symmetric groups.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3