Author:
AMBOS-SPIES KLAUS,KRÄLING THORSTEN
Abstract
We show that, for any abstract complexity measure in the sense of Blum and for any computable function f (or computable operator F), the class of problems that are f-speedable (or F-speedable) does not have effective measure 0. On the other hand, for sufficiently fast growing f (or F), the class of non-speedable computable problems does not have effective measure 0. These results answer some questions raised by Calude and Zimand. We also give a quantitative analysis of Borodin and Trakhtenbrot's Gap Theorem, which corrects a claim by Calude and Zimand.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,Mathematics (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparing Nontriviality for E and EXP;Theory of Computing Systems;2011-12-02