Categorical models of the differential λ-calculus

Author:

Cockett Robin,Gallagher Jonathan

Abstract

AbstractThe paper shows how the Scott–Koymans theorem for the untyped λ-calculus can be extended to the differential λ-calculus. The main result is that every model of the untyped differential λ-calculus may be viewed as a differential reflexive object in a Cartesian-closed differential category. This extension of the Scott–Koymans theorem depends critically on unraveling the somewhat subtle issue of which idempotents can be split so that differential structure lifts to the idempotent splitting.The paper uses (total) Turing categories with “canonical codes” as the basic categorical semantics for the λ-calculus. It develops the main result in a modular fashion by showing how to add left-additive structure to a Turing category, and then – on top of that – differential structure. For both levels of structure, it is necessary to identify how “canonical codes” must behave with respect to the added structure and, furthermore, how “universal objects” must behave. The latter is closely tied to the question – which is the crux of the paper – of which idempotents can be split while preserving the differential structure of the setting.This paper is the full version of a conference paper and includes the proofs which were omitted from that version due to page-length restrictions.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Reference24 articles.

1. A semantics for lambda calculi with resources

2. Dezani-Ciancaglini, M. (1996). Logical Semantics for Concurrent λ-Calculus. Phd thesis, Katholieke Universiteit Nijmegen.

3. Cartesian differential storage categories;Blute;Theory and Application of Categories,2015

4. Differential categories

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combining fixpoint and differentiation theory;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08

2. Jacobians and Gradients for Cartesian Differential Categories;Electronic Proceedings in Theoretical Computer Science;2022-11-03

3. Cartesian Differential Categories as Skew Enriched Categories;Applied Categorical Structures;2021-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3