Non-size increasing graph rewriting for natural language processing

Author:

BONFANTE GUILLAUME,GUILLAUME BRUNO

Abstract

A very large amount of work in Natural Language Processing (NLP) use tree structure as the first class citizen mathematical structures to represent linguistic structures, such as parsed sentences or feature structures. However, some linguistic phenomena do not cope properly with trees; for instance, in the sentence ‘Max decides to leave,’ ‘Max’ is the subject of the both predicates ‘to_decide’ and ‘to_leave’. Tree-based linguistic formalisms generally use some encoding to manage sentences like the previous example. In former papers (Bonfante et al. 2011; Guillaume and Perrier 2012), we discussed the interest to use graphs rather than trees to deal with linguistic structures, and we have shown how Graph Rewriting could be used for their processing, for instance in the transformation of the sentence syntax into its semantics. Our experiments have shown that Graph Rewriting applications to NLP do not require the full computational power of the general Graph Rewriting setting. The most important observation is that all graph vertices in the final structures are in some sense ‘predictable’ from the input data, and so we can consider the framework of Non-size increasing Graph Rewriting. In our previous papers, we have formally described the Graph Rewriting calculus we used and our purpose here is to study the theoretical aspect of termination with respect to this calculus. Given that termination is undecidable in general, we define termination criterions based on weight, we prove the termination of weighted rewriting systems, and we give complexity bounds on derivation lengths for these rewriting systems.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Reference31 articles.

1. Derivational minimalism

2. Copestake A. (2009). Invited Talk: Slacker semantics: Why superficiality, dependency and avoidance of commitment can be the right way to go. In: Proceedings of the 12th Conference of the European Chapter of the ACL (EACL '09), Athens, Greece, Association for Computational Linguistics, 1–9.

3. Termination of graph rewriting is undecidable;Plump;Fundamenta Informaticae,1998

4. Crouch D. (2005). Packed rewriting for mapping semantics to KR. In: Proceedings of IWCS.

5. The Proper Treatment of Quantification in Ordinary English

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3