Abstract
Abstract
Cyclic proof systems permit derivations that are finite graphs in contrast to conventional derivation trees. The soundness of such proofs is ensured by imposing a soundness condition on derivations. The most common such condition is the global trace condition (GTC), a condition on the infinite paths through the derivation graph. To give a uniform treatment of such cyclic proof systems, Brotherston proposed an abstract notion of trace. We extend Brotherston’s approach into a category theoretical rendition of cyclic derivations, advancing the framework in two ways: first, we introduce activation algebras which allow for a more natural formalisation of trace conditions in extant cyclic proof systems. Second, accounting for the composition of trace information allows us to derive novel results about cyclic proofs, such as introducing a Ramsey-style trace condition. Furthermore, we connect our notion of trace to automata theory and prove that verifying the GTC for abstract cyclic proofs with certain trace conditions is PSPACE-complete.
Publisher
Cambridge University Press (CUP)
Reference36 articles.
1. The Complex(ity) Landscape of Checking Infinite Descent
2. Afshari, B. , Leigh, G. E. and Turata, G. M. (2023). A cyclic proof system for full computation tree logic. In: Klin, B. and Pimentel, E. (eds.) 31st EACSL Annual Conference on Computer Science Logic, CSL 2023, February 13–16, 2023, Warsaw, Poland, LIPIcs, vol. 252, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 5:1–5:19.
3. Kozen, D. (1983). Results on the propositional $\mu$ -calculus. Theoretical Computer Science 27 (3) 333–354. Number: 3 Publisher: Elsevier.