Turing universality of the Biochemical Ground Form

Author:

CARDELLI LUCA,ZAVATTARO GIANLUIGI

Abstract

We explore the expressive power of languages that naturally model biochemical interactions relative to languages that only naturally model basic chemical reactions, identifying molecular association as the basic mechanism that distinguishes the former from the latter. We use a process algebra, the Biochemical Ground Form (BGF), that adds primitives for molecular association to CGF, which is a process algebra that has been proved to be equivalent to the traditional notations for describing basic chemical reactions. We first observe that, unlike CGF, BGF is Turing universal as it supports a finite precise encoding of Random Access Machines, which comprise a well-known Turing powerful formalism. Then we prove that the Turing universality of BGF derives from the interplay between the molecular primitives of association and dissociation. In fact, the elimination from BGF of the primitives already present in CGF does not reduce the computational strength of the process algebra, but if either association or dissociation is removed, BGF ceases to be Turing complete.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Error-Free Stable Computation with Polymer-Supplemented Chemical Reaction Networks;Lecture Notes in Computer Science;2019

2. Biochemical Programs and Analog-Digital Mixed Algorithms in the Cell;Life Sciences, Information Sciences;2018-03-25

3. Strong Turing Completeness of Continuous Chemical Reaction Networks and Compilation of Mixed Analog-Digital Programs;Computational Methods in Systems Biology;2017

4. Syntactic Markovian Bisimulation for Chemical Reaction Networks;Lecture Notes in Computer Science;2017

5. From Cells as Computation to Cells as Apps;IFIP Advances in Information and Communication Technology;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3