Abstract
Locally compact Hausdorff spaces generalise Euclidean spaces and metric spaces from ‘metric’ to ‘topology’. But does the effectivity on the latter (Brattka and Weihrauch 1999; Weihrauch 2000) still hold for the former? In fact, some results will be totally changed. This paper provides a complete investigation of a specific kind of space – computably locally compact Hausdorff spaces. First we characterise this type of effective space, and then study computability on closed and compact subsets of them. We use the framework of the representation approach, TTE, where continuity and computability on finite and infinite sequences of symbols are defined canonically and transferred to abstract sets by means of notations and representations.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,Mathematics (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Separating notions in effective topology;International Journal of Algebra and Computation;2023-10-31
2. COMPUTABLE TOPOLOGICAL GROUPS;The Journal of Symbolic Logic;2023-09-18
3. Computably regular topological spaces;Logical Methods in Computer Science;2013-08-20