Rigorous implementation of real-time systems – from theory to application

Author:

ABDELLATIF TESNIM,COMBAZ JACQUES,SIFAKIS JOSEPH

Abstract

The correct and efficient implementation of general real-time applications remains very much an open problem. A key issue is meeting timing constraints whose satisfaction depends on features of the execution platform, in particular its speed. Existing rigorous implementation techniques are applicable to specific classes of systems, for example, with periodic tasks or time-deterministic systems.We present a general model-based implementation method for real-time systems based on the use of two models: An abstract model representing the behaviour of real-time software as a timed automaton, which describes user-defined platform-independent timing constraints. Its transitions are timeless and correspond to the execution of statements of the real-time software.A physical model representing the behaviour of the real-time software running on a given platform. It is obtained by assigning execution times to the transitions of the abstract model. A necessary condition for implementability is time-safety, that is, any (timed) execution sequence of the physical model is also an execution sequence of the abstract model. Time-safety simply means that the platform is fast enough to meet the timing requirements. As execution times of actions are not known exactly, time-safety is checked for the worst-case execution times of actions by making an assumption of time-robustness: time-safety is preserved when the speed of the execution platform increases.We show that, as a rule, physical models are not time-robust, and that time-determinism is a sufficient condition for time-robustness. For a given piece of real-time software and an execution platform corresponding to a time-robust model, we define an execution engine that coordinates the execution of the application software so that it meets its timing constraints. Furthermore, in the case of non-robustness, the execution engine can detect violations of time-safety and stop execution.We have implemented the execution engine for BIP programs with real-time constraints and validated the implementation method for two case studies. The experimental results for a module of a robotic application show that the CPU utilisation and the size of the model are reduced compared with existing implementations. The experimental results for an adaptive video encoder also show that a lack of time-robustness may seriously degrade the performance for increasing platform execution speed.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3