SMT-based verification of data-aware processes: a model-theoretic approach

Author:

Calvanese Diego,Ghilardi SilvioORCID,Gianola AlessandroORCID,Montali Marco,Rivkin Andrey

Abstract

AbstractIn recent times, satisfiability modulo theories (SMT) techniques gained increasing attention and obtained remarkable success in model-checking infinite-state systems. Still, we believe that whenever more expressivity is needed in order to specify the systems to be verified, more and more support is needed from mathematical logic and model theory. This is the case of the applications considered in this paper: we study verification over a general model of relational, data-aware processes, to assess (parameterized) safety properties irrespectively of the initial database (DB) instance. Toward this goal, we take inspiration from array-based systems and tackle safety algorithmically via backward reachability. To enable the adoption of this technique in our rich setting, we make use of the model-theoretic machinery of model completion, which surprisingly turns out to be an effective tool for verification of relational systems and represents the main original contribution of this paper. In this way, we pursue a twofold purpose. On the one hand, we isolate three notable classes for which backward reachability terminates, in turn witnessing decidability. Two of such classes relate our approach to conditions singled out in the literature, whereas the third one is genuinely novel. On the other hand, we are able to exploit SMT technology in implementations, building on the well-known MCMT (Model Checker Modulo Theories) model checker for array-based systems and extending it to make all our foundational results fully operational. All in all, the present contribution is deeply rooted in the long-standing tradition of the application of model theory in computer science. In particular, this paper applies these ideas in an original mathematical context and shows how these techniques can be used for the first time to empower algorithmic techniques for the verification of infinite-state systems based on arrays, so as to make such techniques applicable to the timely, challenging settings of data-aware processes.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Reference74 articles.

1. Model-companions and definability in existentially complete structures

2. On interpolation and symbol elimination in theory extensions;Sofronie-Stokkermans;Logical Methods in Computer Science,2018

3. Interpolation in local theory extensions

4. Robinson, A. (1963). Introduction to Model Theory and to the Metamathematics of Algebra, Studies in Logic and the Foundations of Mathematics, North-Holland.

5. Universal graphs and universal functions

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-aware conformance checking with SMT;Information Systems;2023-07

2. Supporting data-aware processes with MERODE;Software and Systems Modeling;2023-03-13

3. Petri net-based object-centric processes with read-only data;Information Systems;2022-07

4. Combination of Uniform Interpolants via Beth Definability;Journal of Automated Reasoning;2022-05-12

5. Uniform Interpolants in EUF: Algorithms using DAG-representations;Logical Methods in Computer Science;2022-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3