Coherence for bicategorical cartesian closed structure

Author:

Fiore MarceloORCID,Saville PhilipORCID

Abstract

Abstract We prove a strictification theorem for cartesian closed bicategories. First, we adapt Power’s proof of coherence for bicategories with finite bilimits to show that every bicategory with bicategorical cartesian closed structure is biequivalent to a 2-category with 2-categorical cartesian closed structure. Then we show how to extend this result to a Mac Lane-style “all pasting diagrams commute” coherence theorem: precisely, we show that in the free cartesian closed bicategory on a graph, there is at most one 2-cell between any parallel pair of 1-cells. The argument we employ is reminiscent of that used by Čubrić, Dybjer, and Scott to show normalisation for the simply-typed lambda calculus (Čubrić et al., 1998). The main results first appeared in a conference paper (Fiore and Saville, 2020) but for reasons of space many details are omitted there; here we provide the full development.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Reference46 articles.

1. Leinster, T. (1998). Basic Bicategories. Available at https://arxiv.org/abs/math/9810017.

2. Fiore, M. and Joyal, A. 2015. Theory of para-toposes. Talk at the Category Theory 2015 Conference. Departamento de Matematica, Universidade de Aveiro (Portugal).

3. Paquet, H. (2020). Probabilistic concurrent game semantics. PhD thesis, University of Cambridge.

4. Houston, R. (2007). Linear Logic without Units. PhD thesis, University of Manchester.

5. Forest, S. and Mimram, S. (2018). Coherence of Gray categories via rewriting. In: 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effectful semantics in bicategories: strong, commutative, and concurrent pseudomonads;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08

2. An Analysis of Symmetry in Quantitative Semantics;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08

3. The Cartesian Closed Bicategory of Thin Spans of Groupoids;2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3