A domain-theoretic framework for robustness analysis of neural networks

Author:

Zhou Can,Shaikh Razin A.,Li Yiran,Farjudian AminORCID

Abstract

AbstractA domain-theoretic framework is presented for validated robustness analysis of neural networks. First, global robustness of a general class of networks is analyzed. Then, using the fact that Edalat’s domain-theoreticL-derivative coincides with Clarke’s generalized gradient, the framework is extended for attack-agnostic local robustness analysis. The proposed framework is ideal for designing algorithms which are correct by construction. This claim is exemplified by developing a validated algorithm for estimation of Lipschitz constant of feedforward regressors. The completeness of the algorithm is proved over differentiable networks and also over general position${\mathrm{ReLU}}$networks. Computability results are obtained within the framework of effectively given domains. Using the proposed domain model, differentiable and non-differentiable networks can be analyzed uniformly. The validated algorithm is implemented using arbitrary-precision interval arithmetic, and the results of some experiments are presented. The software implementation is truly validated, as it handles floating-point errors as well.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Reference90 articles.

1. Domain Theory in Learning Processes

2. Denotational semantics of hybrid automata

3. A dual number abstraction for static analysis of Clarke Jacobians

4. Clarke, F. H. (1990). Optimization and Nonsmooth Analysis, Philadelphia, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics.

5. Wong, E. and Kolter, J. Z. (2018). Provable defenses against adversarial examples via the convex outer adversarial polytope. In: Dy, J. G. and Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10–15, 2018, Proceedings of Machine Learning Research, vol. 80, PMLR, 5283–5292.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3