1. Dynamic Newton-Puiseux theorem;Mannaa;Journal of Logic and Analysis,2013
2. Cohen, C. , Coquand, T. , Huber, S. and Mörtberg, A. (2015). Cubical type theory: A constructive interpretation of the univalence axiom. In: Uustalu, T . (ed.) 21st International Conference on Types for Proofs and Programs, TYPES 2015, May 18–21, 2015, Tallinn, Estonia, LIPIcs, vol. 69, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 5:1–5:34.
3. The univalence axiom for elegant Reedy presheaves
4. Shulman, M. (2019). All (∞ ,1)-toposes have strict univalent universes. CoRR, abs/1904.07004.
5. Kaposi, A. , Huber, S. and Sattler, C. (2019). Gluing for type theory. In: Geuvers, H. (ed.) 4th International Conference on Formal Structures for Computation and Deduction, FSCD 2019, June 24–30, 2019, Dortmund, Germany, LIPIcs, vol. 131, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 25:1–25:19.