Abstract
In this paper, we continue the study of the geometry of Brownian motions which are encoded by Kolmogorov–Chaitin random reals (complex oscillations). We unfold Kolmogorov–Chaitin complexity in the context of Brownian motion and specifically to phenomena emerging from the random geometric patterns generated by a Brownian motion.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,Mathematics (miscellaneous)
Reference26 articles.
1. Algorithmic Information Theory
2. Nonclassical stochastic flows and continuous products
3. Fontes L. R. G. , Isopi M. , Newman C. M. and Ravishankar K. (2003) The Brownian web: Characterisation and convergence, available at arXiv:math.PR/0304119v1.
4. Arithmetical representations of Brownian motion I
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献