The representational adequacy of Hybrid

Author:

CROLE R. L.

Abstract

The Hybrid system (Ambler et al. 2002b), implemented within Isabelle/HOL, allows object logics to be represented using higher order abstract syntax (HOAS), and reasoned about using tactical theorem proving in general, and principles of (co)induction in particular. The form of HOAS provided by Hybrid is essentially a lambda calculus with constants.Of fundamental interest is the form of the lambda abstractions provided by Hybrid. The user has the convenience of writing lambda abstractions using names for the binding variables. However, each abstraction is actually a definition of a de Bruijn expression, and Hybrid can unwind the user's abstractions (written with names) to machine friendly de Bruijn expressions (without names). In this sense the formal system contains a hybrid of named and nameless bound variable notation.In this paper, we present a formal theory in a logical framework, which can be viewed as a model of core Hybrid, and state and prove that the model is representationally adequate for HOAS. In particular, it is the canonical translation function from λ-expressions to Hybrid that witnesses adequacy. We also prove two results that characterise how Hybrid represents certain classes of λ-expression.We provide the first detailed proof to be published that proper locally nameless de Bruijn expressions and α-equivalence classes of λ-expressions are in bijective correspondence. This result is presented as a form of de Bruijn representational adequacy, and is a key component of the proof of Hybrid adequacy.The Hybrid system contains a number of different syntactic classes of expression, and associated abstraction mechanisms. Hence, this paper also aims to provide a self-contained theoretical introduction to both the syntax and key ideas of the system. Although this paper will be of considerable interest to those who wish to work with Hybrid in Isabelle/HOL, a background in automated theorem proving is not essential.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A focused linear logical framework and its application to metatheory of object logics;Mathematical Structures in Computer Science;2021-03

2. Formalization of Metatheory of the Quipper Quantum Programming Language in a Linear Logic;Journal of Automated Reasoning;2019-06-22

3. Formal Meta-level Analysis Framework for Quantum Programming Languages;Electronic Notes in Theoretical Computer Science;2018-10

4. Canonical HybridLF: Extending Hybrid with Dependent Types;Electronic Notes in Theoretical Computer Science;2016-07

5. Alpha equivalence equalities;Theoretical Computer Science;2012-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3