Categories, relations and dynamic programming

Author:

Moor Oege De

Abstract

Dynamic programming is a strategy for solving optimisation problems. In this paper, we show how many problems that may be solved by dynamic programming are instances of the same abstract specification. This specification is phrased using the calculus of relations offered by topos theory. The main theorem underlying dynamic programming can then be proved by straightforward equational reasoning.The generic specification of dynamic programming makes use of higher-order operators on relations, akin to the fold operators found in functional programming languages. In the present context, a data type is modelled as an initial F-algebra, where F is an endofunctor on the topos under consideration. The mediating arrows from this initial F-algebra to other F-algebras are instances of fold – but only for total functions. For a regular category ε, it is possible to construct a category of relations Rel(ε). When a functor between regular categories is a so-called relator, it can be extended (in some canonical way) to a functor between the corresponding categories of relations. Applied to an endofunctor on a topos, this process of extending functors preserves initial algebras, and hence fold can be generalised from functions to relations.It is well-known that the use of dynamic programming is governed by the principle of optimality. Roughly, the principle of optimality says that an optimal solution is composed of optimal solutions to subproblems. In a first attempt, we formalise the principle of optimality as a distributivity condition. This distributivity condition is elegant, but difficult to check in practice. The difficulty arises because we consider minimum elements with respect to a preorder, and therefore minimum elements are not unique. Assuming that we are working in a Boolean topos, it can be proved that monotonicity implies distributivity, and this monotonicity condition is easy to verify in practice.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Reference66 articles.

1. Cockett R. (1991) Personal Communication.

2. Formal derivation of a pattern matching algorithm

3. Cockett R. and Fukushima T. (1991) Draft: About Charity, Dept. of Computer Science, University of Calgary, Calgary, Alberta, Canada. Available via anonymous ftp from cpsc.ucalgary.ca.

4. A 2-Categorical Approach to Geometric Morphisms I;Carboni;Cahiers de Topologie et Geometrie Differentielle Categoriques,1991

5. Program inversion

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Allegories of Symbolic Manipulations;2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2023-06-26

2. The Geometry of Syntax and Semantics for Directed File Transformations;2020 IEEE Security and Privacy Workshops (SPW);2020-05

3. Functional algorithm design;Science of Computer Programming;1996-05

4. Polytypic programming;Advanced Functional Programming;1996

5. Adding design strategies to fork algebras;Lecture Notes in Computer Science;1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3