Abstract
AbstractWe define representations for downward-closed subsets of a rich family of well-quasi-orders, and more generally for closed subsets of an even richer family of Noetherian topological spaces. This includes the cases of finite words, of multisets, of finite trees, notably. Those representations are given as finite unions of ideals, or more generally of irreducible closed subsets. All the representations we explore are computable, in the sense that we exhibit algorithms that decide inclusion, and compute finite unions and finite intersections. The origin of this work lies in the need for computing finite representations of sets of successors of the downward closure of one state, or more generally of a downward-closed set of states, in a well-structured transition system, and this is where we start: we define adequate notions of completions of well-quasi-orders, and more generally, of Noetherian spaces. For verification purposes, we argue that the required completions must be ideal completions, or more generally sobrifications, that is, spaces of irreducible closed subsets.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,Mathematics (miscellaneous)
Reference67 articles.
1. Spaces with no infinite discrete subspace;Goubault-Larrecq;Topology Proceedings,2019
2. Recursivite et cones rationnels fermes par intersection
3. On Families of Mutually Exclusive Sets
4. Goubault-Larrecq, J. (2013). Non-Hausdorff Topology and Domain Theory, Selected Topics in Point-Set Topology, New Mathematical Monographs, vol. 22, Cambridge University Press.
5. Verifying programs with unreliable channels;Abdulla;LICS'93,1993
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献