Univalent categories of modules

Author:

Flaten Jarl G. TaxeråsORCID

Abstract

AbstractWe show that categories of modules over a ring in homotopy type theory (HoTT) satisfy the internal versions of the AB axioms from homological algebra. The main subtlety lies in proving AB4, which is that coproducts indexed by arbitrary sets are left-exact. To prove this, we replace a set X with the strict category of lists of elements in X. From showing that the latter is filtered, we deduce left-exactness of the coproduct. More generally, we show that exactness of filtered colimits (AB5) implies AB4 for any abelian category in HoTT. Our approach is heavily inspired by Roswitha Harting’s construction of the internal coproduct of abelian groups in an elementary topos with a natural numbers object. To state the AB axioms, we define and study filtered (and sifted) precategories in HoTT. A key result needed is that filtered colimits commute with finite limits of sets. This is a familiar classical result but has not previously been checked in our setting. Finally, we interpret our most central results into an $\infty$ -topos $ {\mathscr{X}} $ . Given a ring R in $ {\tau_{\leq 0}({{\mathscr{X}}})} $ – for example, an ordinary sheaf of rings – we show that the internal category of R-modules in $ {\mathscr{X}} $ represents the presheaf which sends an object $ X \in {\mathscr{X}} $ to the category of $ (X{\times}R) $ -modules in ${\mathscr{X}} / X$ . In general, our results yield a product-preserving left adjoint to base change of modules over X. When X is 0-truncated, this left adjoint is the internal coproduct. By an internalisation procedure, we deduce left-exactness of the internal coproduct as an ordinary functor from its internal left-exactness coming from HoTT.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Reference36 articles.

1. Rasekh, N. (2021). Univalence in higher category theory. arXiv:2103.12762v2.

2. Martini, L. (2021). Yoneda’s lemma for internal higher categories. arXiv:2103.17141v2.

3. A model for the homotopy theory of homotopy theory

4. Towards Constructive Homological Algebra in Type Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3