A semiring-based trace semantics for processes with applications to information leakage analysis

Author:

BOREALE MICHELE,CLARK DAVID,GORLA DANIELE

Abstract

We propose a framework for reasoning about program security building on language-theoretic and coalgebraic concepts. The behaviour of a system is viewed as a mapping from traces of high (unobservable) events to low (observable) events: the less the degree of dependency of low events on high traces, the more secure the system. We take the abstract view that low events are drawn from a generic semiring, where they can be combined using product and sum operations; throughout the paper, we provide instances of this framework, obtained by concrete instantiations of the underlying semiring. We specify systems via a simple process calculus, whose semantics is given as the unique homomorphism from the calculus into the set of behaviours, i.e. formal power series, seen as a final coalgebra. We provide a compositional semantics for the calculus in terms of rational operators on formal power series and show that the final and the compositional semantics coincide. This compositional, syntax-driven framework lays a foundation for automation and abstraction of a quantified approach to flow security of system specifications.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multilevel Non-interference Vulnerability Analysis Method for Information Leakage Problem;2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC);2021-10

2. Searching secrets rationally;International Journal of Approximate Reasoning;2016-02

3. Idea: Enforcing Security Properties by Solving Behavioural Equations;Lecture Notes in Computer Science;2016

4. Comparative Analysis of Leakage Tools on Scalable Case Studies;Model Checking Software;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3