Author:
SEVERI PAULA,DE VRIES FER-JAN
Abstract
In this paper, we introduce a strong form of eta reduction called etabang that we use to construct a confluent and normalising infinitary lambda calculus, of which the normal forms correspond to Barendregt's infinite eta Böhm trees. This new infinitary perspective on the set of infinite eta Böhm trees allows us to prove that the set of infinite eta Böhm trees is a model of the lambda calculus. The model is of interest because it has the same local structure as Scott's D∞-models, i.e. two finite lambda terms are equal in the infinite eta Böhm model if and only if they have the same interpretation in Scott's D∞-models.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,Mathematics (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献