Constrained read-once refutations in UTVPI constraint systems: A parallel perspective

Author:

Subramani K.ORCID,Wojciechowski Piotr

Abstract

Abstract In this paper, we analyze two types of refutations for Unit Two Variable Per Inequality (UTVPI) constraints. A UTVPI constraint is a linear inequality of the form: $a_{i}\cdot x_{i}+a_{j} \cdot x_{j} \le b_{k}$ , where $a_{i},a_{j}\in \{0,1,-1\}$ and $b_{k} \in \mathbb{Z}$ . A conjunction of such constraints is called a UTVPI constraint system (UCS) and can be represented in matrix form as: ${\bf A \cdot x \le b}$ . UTVPI constraints are used in many domains including operations research and program verification. We focus on two variants of read-once refutation (ROR). An ROR is a refutation in which each constraint is used at most once. A literal-once refutation (LOR), a more restrictive form of ROR, is a refutation in which each literal ( $x_i$ or $-x_i$ ) is used at most once. First, we examine the constraint-required read-once refutation (CROR) problem and the constraint-required literal-once refutation (CLOR) problem. In both of these problems, we are given a set of constraints that must be used in the refutation. RORs and LORs are incomplete since not every system of linear constraints is guaranteed to have such a refutation. This is still true even when we restrict ourselves to UCSs. In this paper, we provide NC reductions between the CROR and CLOR problems in UCSs and the minimum weight perfect matching problem. The reductions used in this paper assume a CREW PRAM model of parallel computation. As a result, the reductions establish that, from the perspective of parallel algorithms, the CROR and CLOR problems in UCSs are equivalent to matching. In particular, if an NC algorithm exists for either of these problems, then there is an NC algorithm for matching.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Reference34 articles.

1. Sankowski, P. (2018). NC algorithms for weighted planar perfect matching and related problems. In: 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), Leibniz International Proceedings in Informatics (LIPIcs), vol. 107, Dagstuhl, Germany, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 97:1–97:16.

2. Complexity of finding short resolution proofs

3. In Between Resolution and Cutting Planes: A Study of Proof Systems for Pseudo-Boolean SAT Solving

4. Finding read-once resolution refutations in systems of 2CNF clauses

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3