The geography of phylogenetic paleoecology: integrating data and methods to better understand biotic response to climate change

Author:

Lawing A. MichelleORCID

Abstract

AbstractDeeper knowledge about how species and communities respond to climate change and environmental gradients should be supported by evidence from the past, especially as modern responses are influenced by anthropogenic pressures, including human population growth, habitat destruction and fragmentation, and intensifying land use. There have been great advances in modeling species’ geographic distributions over shallow time, where consideration of evolutionary change is likely less important due to shorter time for evolution and speciation to occur. Over these shallow time periods, we have more resources for paleoclimate interpretation across large geographic landscapes. We can also gain insight into species and community changes by studying deep records of temporal changes. However, modeling species geographic distributions in deep time remains challenging, because for many species there is sparse coverage of spatial and temporal occurrences and there are fewer paleoclimate general circulation models (GCMs) to help interpret the geographic distribution of climate availability. In addition, at deeper time periods, it is essential to consider evolutionary change within lineages of species. I will discuss a framework that integrates evolutionary information in the form of phylogenetic relatedness from clades of extant closely related species, where and when there are associated fossil occurrences, and the geographic distribution of paleoclimate in deep time to infer species past geographic response to climate change and to estimate where and when there were hotspots of ancient diversification. More work is needed to better understand the evolution of physiological tolerances and how physiological tolerances relate to the climate space in which species occur.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3