Canadian Association of Neuroscience Review: Cellular and Synaptic Insights into Physiological and Pathological Pain

Author:

Zhuo Min

Abstract

Neurons and synapses in the central nervous system are plastic, undergoing long-term changes throughout life. Studies of molecular and cellular mechanisms of such changes not only provide important insight into how we learn and store new knowledge in our brains, but they also reveal the mechanisms of pathological changes that occur following injury. The author proposes that during induction, neuronal mechanisms underlying physiological functions, such as learning and memory, may share some common signaling molecules with abnormal or injury-related changes in the brain. Distinct synaptic and neuronal network mechanisms are involved in pathological pain as compared to cognitive learning and memory. Nociceptive information is transmitted and regulated at different levels of the brain, from the spinal cord to the forebrain. Furthermore, N-methyl-D-aspartate receptor-dependent and calcium-calmodulin activated adenylyl cyclases (AC1 and AC8) in the anterior cingulate cortex play important roles in the induction and expression of persistent inflammatory and neuropathic pain. Neuronal activity in the anterior cingulate cortex can also influence nociceptive transmission in the dorsal horn of the spinal cord by activating the endogenous facilitatory system. Our results provide important synaptic and molecular insights into physiological responses to injury.

Publisher

Cambridge University Press (CUP)

Subject

Clinical Neurology,Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3