Author:
Xin Xiao-Yu,Pan Jing,Wang Xiao-Qiang,Ma Jian-Fang,Ding Jian-Qing,Yang Guo-Yuan,Chen Sheng-Di
Abstract
Background:Hypoxia inducible factor 1 (HIF-1) is a key transcriptional factor activated during cerebral ischemia, which regulates a great number of downstream genes, including those associated with cell death. In the present study, we aimed to test the hypothesis that post-ischemic HIF-1α up-regulation might promote autophagy activation; thereby, HIF-1α inhibitor 2ME2 might prevent neurons from ischemic injury through inhibiting autophagy.Methods:Global ischemia was induced using the four-vessel occlusion model (4-VO) in Sprague-Dawley rats (male, 250-280g). 2-Methoxyestradiol (2ME2, 5mg/kg, i.p.) was administrated to down-regulate HIF-1α expression. Post-ischemic beclin-1 and LC3 protein expression was determined at different time points through Western blot assay. Neuronal injury was determined by cresyl violet staining and TUNEL staining in coronal histological sections.Results:The expression of beclin-1 and the ratio of LC3-II/LC3-I increased significantly at 12 and 24 h after ischemia. 2ME2 could remarkably inhibit the up-regulation of beclin-1 and the increase of LC3-II/LC3-I ratio during reperfusion. Moreover, 2ME2 and 3-MA exhibited powerful protective effects against ischemic/reperfusion induced neuronal injury.Conclusions:This study confirmed that autophagy participated in post-ischemic neuronal injury. 2ME2, a HIF-1α inhibitor, might significantly decrease autophagy activation after cerebral ischemia and relieve post-ischemic neuronal injury. Our findings demonstrate that autophagy could be a potential target for neuronal protection after cerebral ischemia.
Publisher
Cambridge University Press (CUP)
Subject
Neurology (clinical),Neurology,General Medicine
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献