Normal Mode Copulas for Nonmonotonic Dependence

Author:

Fukumoto KentaroORCID

Abstract

Abstract Copulas are helpful in studying joint distributions of two variables, in particular, when confounders are unobserved. However, most conventional copulas cannot model joint distributions where one variable does not increase or decrease in the other in a monotonic manner. For instance, suppose that two variables are linearly positively correlated for one type of unit and negatively for another type of unit. If the type is unobserved, we can observe only a mixture of both types. Seemingly, one variable tends to take either a high or low value (or a middle value) when the other variable is small (large), or vice versa. To address this issue, I consider an overlooked copula with trigonometric functions (Chesneau [2021, Applied Mathematics, 1(1), pp. 3–17]) that I name the “normal mode copula.” I apply the copula to a dataset about government formation and duration to demonstrate that the normal mode copula has better performance than other conventional copulas.

Funder

Japan Society for the Promotion of Science

Publisher

Cambridge University Press (CUP)

Reference22 articles.

1. Chiba, D. , Martin, L. W. , and Stevenson, R. T. . 2014. Replication Data for: A Copula Approach to the Problem of Selection Bias in Models of Government Survival. https://doi.org/10.7910/DVN/26966, Harvard Dataverse, V2.

2. Genz, A. , et al. 2021. “mvtnorm: Multivariate Normal and t Distributions.” R Package Version 1.1–3. http://CRAN.R-project.org/package=mvtnorm

3. Fukumoto, K . 2023b. Replication Data for: Normal Mode Copulas for Nonmonotonic Dependence. https://doi.org/10.7910/DVN/X94ITA, Harvard Dataverse, V1.

4. Schafer, J. , Opgen-Rhein, R. , Zuber, V. , Miika Ahdesmaki, A. , Silva, P. D. , and Strimmer, K. . 2021. “Corpcor: Efficient Estimation of Covariance and (Partial) Correlation.” R Package Version 1.6.10. https://CRAN.R-project.org/package=corpcor

5. Every Story Has a Beginning, Middle, and an End (But Not Always in That Order): Predicting Duration Dynamics in a Unified Framework;Chiba;Political Science Research and Methods,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3